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Avrim Blum

Lecture 7: SVD for Matrices



Recap

Real Spectral Theorem (every self-adjoint operator has an orthonormal basis of
eigenvectors, Raleigh quotients: R, (v) = (D, ¢(¥)), eigenvectors as
maximizers/minimizers, positive semi-definiteness.

Consider @:V — W. Analyze using eigenvectors/eigenvalues of ¢*@ and p¢~.

If v is eigenvector of @ " @:V — V with eigenvalue A # 0, then @ (v) is eigenvector
of p™: W — W with eigenvalue 4; in other direction, w, @™ (w).

If v, v, are orthogonal eigenvectors of ¢* @ then ¢ (v,), ¢ (v,) are orthogonal
eigenvectors of ™.

SVD: Let o = -+- > g> > 0 be nonzero eigenvalues of ¢*@ with corresponding
orthonormal eigenvectors v4, ..., v,.. Let w; = @(v;)/0;. Then:

> Wy, ..., W, are orthonormal, ¢ (v;) = o;w; and @; (w;) = o;v;.
> @ = Yi_q10; |w;{v;|, where |w;)(v;]| is outer product.



SVD for Matrices

Let’s consider matrices A € C™*" viewed as linear transformations from C™ to C™.

* Let g# > --- > g7 > 0 be nonzero singular values of A with v, ..., v, and wy, ..., w, as
the right and left singular vectors respectively.

> Avi — O'l'Wi,A*Wi = 0;V;, where A* = AT,

T
. § *
A= O'l'Wl'Ui .

=1

* Then,

* Check: (X1-4 oW V; )Vj = ajwjvj‘vj = ojw; = Avj, and if extend vy, ..., V- to

orthonormal basis, then for all other basis vectors both sides give 0.



SVD for Matrices

Let’s consider matrices A € C™*" viewed as linear transformations from C™ to C™.

* Let g# > --- > g7 > 0 be nonzero singular values of A with v, ..., v, and wy, ..., w, as
the right and left singular vectors respectively.

> Avi — O'l'Wi,A*Wi = 0;V;, where A* = AT,

T
_ § *
A= O'l'Wl'Ui .

=1

* Then,

e Can write this as:
A=WXV"

Where W has wy, ..., w,. as columns, V* has v{, ..., v asrows,and Zisanr X r
1 r 1 r
diagonal matrix with X;; = o;.



SVD for Matrices




SVD for Matrices

Definition 1.1 A matrix U € C"*" is known as a unitary matrix if the columns of U form an

orthonormal basis for C".
If we complete w’s and v’s to an orthonormal bases, creating W,,, and V}, respectively,

these are unitary matrices.
— id, where id denotes

Proposition 1.2 Let U € C"" be a unitary matrix. Then UU" = U"U

the identity matrix.

We had A = WZV*. We can also write A = W,,,X'V, where X;; = g; for i < r and all

other entries of X' are 0.



SVD for Matrices

A=W,V
Ui] Z‘ir w?’_—l—l w_m
( \ [«
— Or
0
\ IV
Avi = O;W; WAV =

AV = (WZ'VHV = Wy AA™W =




Low-rank approximation for matrices

Given matrix A, we may want to find the matrix B of rank < k that “best approximates” A.

What notion of approximation?

A — B)v
We’'ll use spectral norm: I(A—B)|, = max I o Joll, .
v 5

Forv = (C1, e Cn)T;
Ivllz = (v, v) = Eilc Y2

Next class will see also works for Frobenius norm = \/ZU(A — B)l-jz.

Solution: take top k singular vectors: B = Ay = Y5, o;w;v;.



Low-rank approximation for matrices

Proposition 2.1 |A — Agl|, = 0pi1.

Let’s start with the easier “=" direction:

What v should we try?
(A=A Vi1 = Qlizk+1 OiWiV; )Vik41 = Ok41Wkt1-

Length is 0y, 1.




Low-rank approximation for matrices

Proposition 2.1 |A — Agl|, = 0pi1. |(A—B)l, = max

Now let’s do the “<” direction: Write v as linear combination of vy, ..., 1, plus
orthogonal component. Orthogonal part in nullspace.

#0

(A - B)oll,

o]l

|

(A Ak)v = (Zl —k+1 OiWiV; )(Zl 1 GV l) — :' k+1 CiOiW;

1A = Avll* = || Zicrr cioiwill* = Xizgralcillo;

We can wlog assume ||v|| = 1. What does this say about Y7, . ;|c;|%?

SO Zl k+1|ci|2|0-l

|2

|2

is maximized at cx41 = 1. Get ||(4A — 4, )V||5 < 07,4

Ans: < 1.




Low-rank approximation for matrices

Proposition 2.1 |A — Ai|[, = o141. (A~ B)ll, = max I(A—B)o|l,
A ol

Now, just need to show that no other rank-k approximation can get closer.

But first, note that our argument also shows that ||A||, = oy.

* Avy = Q=1 0iw;V)v; = gyw;. Lengthis a;.

* Av = (Bi=1 0w v;) Bi=1 V) = Xi=q CiOW;. |1Av||* = i= 1C O-l = 01



Low-rank approximation for matrices 0T,

Proposition 2.4 Let B € C"*" have rank(B) < kand let k < r. Then ||A — B||, = 041

Proof: (very similar to proof for Courant-Fischer thm)

 Since rank(B) < k, the nullspace of B has dimension > n — k. (rank-nullity thm)

* So, (nullspace of B) N span(vy, ..., Vx+1) is a subspace of dimension > 1.
Pick some unit-length 2 = )., ;<41 C;V; in this intersection.

* We have (A —B)Z = AZ— BZ = Az, so:

* I(A = B)zll3 = lAZI17 = (A2, AZ) = (E1cisk+1 CiOiWi» Dasisk+1 Ci0iWi)

= leisk+1 |Ci|20i2 = (leisk+1 |Ci|2)01§+1 = O-I§+1



Midterm next Monday

* In class (TTIC 530)

* You may bring in one sheet of notes.
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