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Recap

• Real Spectral Theorem (every self-adjoint operator has an orthonormal basis of 
eigenvectors, Raleigh quotients: 𝑅𝜑 𝑣 = ො𝑣, 𝜑 ො𝑣 , eigenvectors as 
maximizers/minimizers, positive semi-definiteness.

• Consider 𝜑: 𝑉 → 𝑊.  Analyze using eigenvectors/eigenvalues of 𝜑∗𝜑 and 𝜑𝜑∗.

• If 𝑣 is eigenvector of 𝜑∗𝜑: 𝑉 → 𝑉 with eigenvalue 𝜆 ≠ 0, then 𝜑(𝑣) is eigenvector 
of 𝜑𝜑∗: 𝑊 → 𝑊 with eigenvalue 𝜆; in other direction, 𝑤, 𝜑∗(𝑤).

• If 𝑣1, 𝑣2 are orthogonal eigenvectors of 𝜑∗𝜑 then 𝜑 𝑣1 , 𝜑(𝑣2) are orthogonal 
eigenvectors of 𝜑𝜑∗. 

• SVD: Let 𝜎1
2 ≥ ⋯ ≥ 𝜎𝑟

2 > 0 be nonzero eigenvalues of 𝜑∗𝜑 with corresponding 
orthonormal eigenvectors 𝑣1, … , 𝑣𝑟. Let 𝑤𝑖 = 𝜑(𝑣𝑖)/𝜎𝑖.  Then:

➢  𝑤1, … , 𝑤𝑟 are orthonormal, 𝜑 𝑣𝑖 = 𝜎𝑖𝑤𝑖 and 𝜑𝑖
∗ 𝑤𝑖 = 𝜎𝑖𝑣𝑖.

➢ 𝜑 = σ𝑖=1
𝑟 𝜎𝑖 |𝑤𝑖⟩⟨𝑣𝑖|, where |𝑤𝑖⟩⟨𝑣𝑖| is outer product.



SVD for Matrices

Let’s consider matrices 𝐴 ∈ ℂ𝑚𝑥𝑛, viewed as linear transformations from ℂ𝑛 to ℂ𝑚.

• Let 𝜎1
2 ≥ ⋯ ≥ 𝜎𝑟

2 > 0 be nonzero singular values of 𝐴 with 𝑣1, … , 𝑣𝑟 and 𝑤1, … , 𝑤𝑟  as 
the right and left singular vectors respectively.

➢  𝐴𝑣𝑖 = 𝜎𝑖𝑤𝑖 , 𝐴∗𝑤𝑖 = 𝜎𝑖𝑣𝑖, where 𝐴∗ = 𝐴𝑇. 

• Then,

𝐴 = 

𝑖=1

𝑟

𝜎𝑖𝑤𝑖𝑣𝑖
∗ .

• Check: σ𝑖=1
𝑟 𝜎𝑖𝑤𝑖𝑣𝑖

∗ 𝑣𝑗 = 𝜎𝑗𝑤𝑗𝑣𝑗
∗𝑣𝑗 = 𝜎𝑗𝑤𝑗 = 𝐴𝑣𝑗, and if extend 𝑣1, … , 𝑣𝑟 to 

orthonormal basis, then for all other basis vectors both sides give 0.



SVD for Matrices

Let’s consider matrices 𝐴 ∈ ℂ𝑚𝑥𝑛, viewed as linear transformations from ℂ𝑛 to ℂ𝑚.

• Let 𝜎1
2 ≥ ⋯ ≥ 𝜎𝑟

2 > 0 be nonzero singular values of 𝐴 with 𝑣1, … , 𝑣𝑟 and 𝑤1, … , 𝑤𝑟  as 
the right and left singular vectors respectively.

➢  𝐴𝑣𝑖 = 𝜎𝑖𝑤𝑖 , 𝐴∗𝑤𝑖 = 𝜎𝑖𝑣𝑖, where 𝐴∗ = 𝐴𝑇. 

• Then,

𝐴 = 

𝑖=1

𝑟

𝜎𝑖𝑤𝑖𝑣𝑖
∗ .

• Can write this as:
𝐴 = 𝑊Σ𝑉∗

Where 𝑊 has 𝑤1, … , 𝑤𝑟 as columns, 𝑉∗ has 𝑣1
∗, … , 𝑣𝑟

∗ as rows, and Σ is an 𝑟 × 𝑟 
diagonal matrix with Σ𝑖𝑖 = 𝜎𝑖.



5

SVD for Matrices



SVD for Matrices

If we complete 𝑤’s and 𝑣’s to an orthonormal bases, creating 𝑊𝑚 and 𝑉𝑛 respectively, 
these are unitary matrices.

We had 𝐴 = 𝑊Σ𝑉∗.  We can also write 𝐴 = 𝑊𝑚Σ′𝑉𝑛
∗ where Σ𝑖𝑖

′ = 𝜎𝑖 for 𝑖 ≤ 𝑟 and all 
other entries of Σ′ are 0.
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SVD for Matrices

𝐴𝑣𝑖 = 𝜎𝑖𝑤𝑖

𝐴𝑉 = 𝑊Σ′𝑉∗ 𝑉 = 𝑊Σ′  

𝐴∗𝐴𝑉 = 
𝐴𝐴∗𝑊 = 



Low-rank approximation for matrices

Given matrix 𝐴, we may want to find the matrix 𝐵 of rank ≤ 𝑘 that “best approximates” 𝐴.

What notion of approximation?

We’ll use spectral norm:

Next class will see also works for Frobenius norm = σ𝑖𝑗 𝐴 − 𝐵 𝑖𝑗
2

.

Solution: take top 𝑘 singular vectors: 𝐵 = 𝐴𝑘 = σ𝑖=1
𝑘 𝜎𝑖𝑤𝑖𝑣𝑖

∗.

For 𝑣 = 𝑐1, ⋯ , 𝑐𝑛
⊤, 

𝑣 2 = 𝑣, 𝑣 = σ𝑖=1
𝑛 𝑐𝑖

2 1/2



Low-rank approximation for matrices

Let’s start with the easier “≥” direction: 

What 𝑣 should we try? 

𝐴 − 𝐴𝑘 𝑣𝑘+1 = (σ𝑖=𝑘+1
𝑟 𝜎𝑖𝑤𝑖𝑣𝑖

∗)𝑣𝑘+1 = 𝜎𝑘+1𝑤𝑘+1.  

Length is 𝜎𝑘+1.



Low-rank approximation for matrices

Now let’s do the “≤” direction: 

• 𝐴 − 𝐴𝑘 𝑣 = (σ𝑖=𝑘+1
𝑟 𝜎𝑖𝑤𝑖𝑣𝑖

∗) σ𝑖=1
𝑟 𝑐𝑖𝑣𝑖  

Write 𝑣 as linear combination of 𝑣1, … , 𝑣𝑟 plus 
orthogonal component. Orthogonal part in nullspace.

=  σ𝑖=𝑘+1
𝑟 𝑐𝑖𝜎𝑖𝑤𝑖  

• 𝐴 − 𝐴𝑘 𝑣 2 = ‖ σ𝑖=𝑘+1
𝑟 𝑐𝑖𝜎𝑖𝑤𝑖‖2 = σ𝑖=𝑘+1

𝑟 𝑐𝑖
2 𝜎𝑖

2

• We can wlog assume 𝑣 = 1.  What does this say about σ𝑖=𝑘+1
𝑟 𝑐𝑖

2? Ans: ≤ 1.

• So, σ𝑖=𝑘+1
𝑟 𝑐𝑖

2 𝜎𝑖
2 is maximized at 𝑐𝑘+1 = 1. Get 𝐴 − 𝐴𝑘 𝑣 2

2 ≤ 𝜎𝑘+1
2 .



Low-rank approximation for matrices

Now, just need to show that no other rank-𝑘 approximation can get closer.  

But first, note that our argument also shows that 𝐴 2 = 𝜎1.

• 𝐴𝑣1 = (σ𝑖=1
𝑟 𝜎𝑖𝑤𝑖𝑣𝑖

∗)𝑣1 = 𝜎1𝑤1.  Length is 𝜎1.   

• 𝐴𝑣 = (σ𝑖=1
𝑟 𝜎𝑖𝑤𝑖𝑣𝑖

∗) σ𝑖=1
𝑟 𝑐𝑖𝑣𝑖 = σ𝑖=1

𝑟 𝑐𝑖𝜎𝑖𝑤𝑖.  𝐴𝑣 2 = σ𝑖=1
𝑟 𝑐𝑖

2𝜎𝑖
2 ≤ 𝜎1

2.



Low-rank approximation for matrices

Proof: (very similar to proof for Courant-Fischer thm) 

• Since 𝑟𝑎𝑛𝑘 𝐵 ≤ 𝑘, the nullspace of 𝐵 has dimension ≥ 𝑛 − 𝑘. (rank-nullity thm)

• So, (nullspace of 𝐵) ∩ span 𝑣1, … , 𝑣𝑘+1  is a subspace of dimension ≥ 1.  
Pick some unit-length Ƹ𝑧 = σ1≤𝑖≤𝑘+1 𝑐𝑖𝑣𝑖 in this intersection. 

• We have 𝐴 − 𝐵 Ƹ𝑧 = 𝐴 Ƹ𝑧 − 𝐵 Ƹ𝑧 = 𝐴 Ƹ𝑧, so: 

• 𝐴 − 𝐵 Ƹ𝑧 2
2 = 𝐴 Ƹ𝑧 2

2 = 𝐴 Ƹ𝑧, 𝐴 Ƹ𝑧 = σ1≤𝑖≤𝑘+1 𝑐𝑖𝜎𝑖𝑤𝑖 , σ1≤𝑖≤𝑘+1 𝑐𝑖𝜎𝑖𝑤𝑖

     = σ1≤𝑖≤𝑘+1 |𝑐𝑖|2𝜎𝑖
2 ≥ σ1≤𝑖≤𝑘+1 |𝑐𝑖|2 𝜎𝑘+1

2 = 𝜎𝑘+1
2



Midterm next Monday

• In class (TTIC 530)

• You may bring in one sheet of notes.
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